Alternative Energy through Traditional Energy:
How the Natural Gas Revolution and Site Suitability Technologies are Providing
New Economic Development Opportunities and Alternative Fuels in Louisiana

Presented to:
Presented by:

Victor Leotta
Tommy Kurtz, CEcD, MPA

17170 Perkins Road
Baton Rouge, Louisiana 70810
www.leollc.com
October 7, 2013
Alternative Energy through Traditional Energy: Louisiana 2008

- South LA recovering from Katrina, Rita - construction boom south of I-10
- North LA experiencing economic bump from Haynesville Shale activity while GM truck plant announces closure
- High natural gas prices in early and mid-2000s soften heavy industrial and manufacturing sectors
- Newly elected Jindal administration focuses on traditional sectors and new emerging sectors - "Blue Ocean"
- Beginning of national recession slows economic base
- Closing and curtailing of some pulp/paper mills in N LA
- Tech entrepreneurs flock to New Orleans and S LA along with growing entertainment sector
Alternative Energy through Traditional Energy: LED pursues "Blue Ocean" Strategy

- Fortune-500 consultant McKinsey and Company hired by LED for target industry study completed in 2009

Sector themes

- Digital media/software development
- Next generation auto
- Specialty healthcare
- Renewables & energy efficiency
- Water management
- Next wave oil & gas

Growth initiatives

- Next generation digital media/software development ecosystem (includes Healthcare software development)
- Auto: Supplying the future driving experience
- Specialty research hospital and corridor: Treating the nation
- Obesity/diabetes research and treatment
- Manufacturing pharmaceuticals
- Energy efficiency: Green living, green building, green manufacturing
- Renewable energy: Power and fuel for the future
- Nuclear Power: Parts and modular production
- Water management: The Netherlands of the US
- Ultra-deep water: Under the sea
- Unconventional gas: Not everything’s bigger in TX
- Enhanced oil recovery: Scraping the bottom of the barrel

Overview of blue ocean targets (continued)

<table>
<thead>
<tr>
<th>Energy efficiency: Green living, green building, green manufacturing</th>
<th>Why exciting?</th>
<th>Why Louisiana?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potential to lead the South into the “green century” by attracting manufacturing operations</td>
<td>Momentum and rising demand exists in the state, particularly in hurricane-impacted areas</td>
</tr>
<tr>
<td></td>
<td>Large projected investments in energy efficiency globally and domestically</td>
<td>Competitive, flexible labor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distinctive natural resources and transportation assets leading to a natural competitive advantage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Renewable energy: Power and fuel for the future</th>
<th>Why exciting?</th>
<th>Why Louisiana?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large U.S. and international mandates and incentives anticipated</td>
<td>Wealth of natural resources for commercial stage technologies</td>
</tr>
<tr>
<td></td>
<td>Growing consumer demand to pursue green energy</td>
<td>Mississippi & Red Rivers for hydropower</td>
</tr>
<tr>
<td></td>
<td>Long-term potential to reduce electricity costs with renewable fuel sources</td>
<td>Supply of timberland for wood-based biomass & biofuels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resources for renewable fuel sources (e.g., algae, switchgrass, sugarcane)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High concentration of energy-intensive operations that would benefit from lower cost energy sources</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unconventional gas: Not everything's bigger in Texas</th>
<th>Why exciting?</th>
<th>Why Louisiana?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Shift from tight gas supply to discovery of substantial domestic resources</td>
<td>• Haynesville Shale is the largest unconventional natural gas play in the U.S. (fourth largest in the world)</td>
<td></td>
</tr>
<tr>
<td>• Cutting edge drilling and fracking technologies to unleash full potential of natural gas reservoirs</td>
<td>• Initial production has exceeded expectations and drilling remains very economically competitive</td>
<td></td>
</tr>
<tr>
<td>• Cleaner alternative to other widely used fuels (e.g., coal)</td>
<td>• Developed oil and gas industry with experienced and skilled workforce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Potential to cultivate R&D operations that export technologies to other unconventional gas basins</td>
<td></td>
</tr>
</tbody>
</table>
Alternative Energy through Traditional Energy: Louisiana’s Mixed Results on Green Energy Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Type of Fuel</th>
<th>Location</th>
<th>Jobs</th>
<th>Capital Investment</th>
<th>Announce Date</th>
<th>Project Start Date</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blade Dynamics</td>
<td>Wind turbine blade manufacturing</td>
<td>New Orleans</td>
<td>650</td>
<td>$13M</td>
<td>August 2010</td>
<td>Spring 2011</td>
<td>35 jobs total, rolled out first test blade this Summer</td>
</tr>
<tr>
<td>Sundrop Fuels</td>
<td>biofuels/woodwaste-natural gas</td>
<td>Alexandria</td>
<td>150</td>
<td>$450M</td>
<td>November 2011</td>
<td>mid-2014</td>
<td>under construction</td>
</tr>
<tr>
<td>Cool Planet Energy Systems</td>
<td>biofuels/woodwaste-natural gas</td>
<td>Alexandria</td>
<td>72</td>
<td>$168M</td>
<td>August 2013</td>
<td>late-2014</td>
<td>under construction</td>
</tr>
<tr>
<td>Pointbio Energy</td>
<td>wood pellets for export</td>
<td>Baton Rouge</td>
<td>100</td>
<td>$100M</td>
<td>April 2010</td>
<td>early-2012</td>
<td>under construction</td>
</tr>
<tr>
<td>Drax Biomass</td>
<td>wood pellets for export</td>
<td>Monroe</td>
<td>63</td>
<td>$120M</td>
<td>December 2012</td>
<td>early-2014</td>
<td>under construction</td>
</tr>
</tbody>
</table>

source: LED website, Baton Rouge Business Report, New Orleans City Business
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Source: Ed Bee: *Fueling Prosperity* and EIA
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Gas Production in Conventional Fields, Lower 48 States

Source: Energy Information Administration based on data from HPDI, IN Geological Survey, USGS
Updated: April 5, 2009
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Figure 3. Marketed production of natural gas in the United States and the Gulf of Mexico, 2011 (million cubic feet)

Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Natural gas production and reserves are at levels not seen since the 1970s. U.S. natural gas production is now at an all time recorded peak. These consistent increases should lead to a steady feedstock supply that does not impinge on other domestic natural gas uses.

Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Alternative Natural Gas Reserves

There are a wide range of unconventional shale gas reserve estimates that are as low as 436 Tcf to as high as 2,750 Tcf. This represents a range of between 18 years and over 100 years of available natural gas resources based upon current consumption levels.*

![Bar Chart]

Note: *Assumes an annual consumption level of 24.3 Tcf. The MIT study reached a mean estimate of technically recoverable resources of 631 Tcf with an 80 percent confidence interval of 418 to 871 Tcf. The ITG estimates of recoverable resources is for 10 overlapping plays, totaling 900 Tcf. These are the same 10 plays as estimated by the EIA’s AEO (resulting in 426 Tcf). IHS Energy estimates show that total recoverable shale in the U.S. could be as high as 2,750 Tcf, significantly higher than their estimate of 1,268 in 2010.
Shale reserves have a significant impact on future price outlook. Abundant supplies should keep prices from increasing back to levels seen as recently as 2009. The current AEO forecasts natural gas prices in 2030 at $6.29/Mcf (40 percent less than the 2009 AEO forecast).

Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Natural Gas Prices Drop from over $8 average mmbtu in 2008 to $3.76 in 2013 YTD-mid year (source: USEIA, July issue of Natural Gas Monthly)

Louisiana Economic Development (LED) begins working dozens of both medium and large chemical-based (with large NG feedstock) and value-added natural gas fuel projects {Compressed Natural Gas (CNG)}, {Liquefied Natural Gas (LNG)}, and {Gas to Liquids (GTL)}, projects totaling in the tens of billions of dollars of capital investment and hundreds of thousands of new jobs

Dilemma 1: Need for medium and large greenfield sites within the LA’s existing industrial corridors
Dilemma 2: Need for workforce for both construction and operations of facilities
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Of the proposed facility expansions in Louisiana, gas-to-liquids and LNG export comprise the majority of proposed capital spending.

- GTL, $22.5 billion, 36%
- LNG Export, $19.5 billion, 31%
- Cracker/Polymer, $14.8 billion, 24%
- Methanol/Ammonia, $3.1 billion, 5%
- Other, $2.4 billion, 4%

Total anticipated capital expenditures = $62.2 Billion
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Potential Economic Impacts/Benefit: Construction, State

If developed, all Louisiana natural gas driven project investments will result in a total state-wide economic impact of some $29.7 billion, the creation of over to 214,000 employment opportunities, and $9.3 billion in new wages.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>20,205.2</td>
<td>4.4</td>
<td>1,715.4</td>
<td>2,461.9</td>
<td>3,830.9</td>
<td>3,907.5</td>
<td>4,255.9</td>
<td>3,150.0</td>
<td>1,002.5</td>
<td>76.8</td>
</tr>
<tr>
<td>Indirect</td>
<td>3,243.9</td>
<td>0.7</td>
<td>275.4</td>
<td>395.2</td>
<td>582.9</td>
<td>627.3</td>
<td>683.3</td>
<td>505.7</td>
<td>160.9</td>
<td>12.3</td>
</tr>
<tr>
<td>Induced</td>
<td>6,287.8</td>
<td>1.4</td>
<td>533.8</td>
<td>766.1</td>
<td>1,129.9</td>
<td>1,218.0</td>
<td>1,324.4</td>
<td>980.3</td>
<td>312.0</td>
<td>23.9</td>
</tr>
<tr>
<td>Total</td>
<td>29,736.8</td>
<td>6.4</td>
<td>2,524.6</td>
<td>3,623.2</td>
<td>5,343.7</td>
<td>5,750.8</td>
<td>6,263.6</td>
<td>4,636.0</td>
<td>1,475.4</td>
<td>113.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Employment (jobs)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>136,900</td>
<td>30</td>
<td>11,623</td>
<td>16,680</td>
<td>24,601</td>
<td>26,475</td>
<td>28,836</td>
<td>21,343</td>
<td>6,792</td>
<td>520</td>
</tr>
<tr>
<td>Indirect</td>
<td>21,885</td>
<td>5</td>
<td>1,858</td>
<td>2,667</td>
<td>3,933</td>
<td>4,232</td>
<td>4,610</td>
<td>3,412</td>
<td>1,086</td>
<td>83</td>
</tr>
<tr>
<td>Induced</td>
<td>55,885</td>
<td>12</td>
<td>4,745</td>
<td>6,809</td>
<td>10,043</td>
<td>10,807</td>
<td>11,771</td>
<td>8,712</td>
<td>2,773</td>
<td>212</td>
</tr>
<tr>
<td>Total</td>
<td>214,670</td>
<td>47</td>
<td>18,225</td>
<td>26,156</td>
<td>38,576</td>
<td>41,515</td>
<td>45,217</td>
<td>33,467</td>
<td>10,651</td>
<td>816</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wages (million $)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct</td>
<td>6,585.1</td>
<td>1.4</td>
<td>559.1</td>
<td>802.3</td>
<td>1,183.3</td>
<td>1,273.5</td>
<td>1,387.1</td>
<td>1,028.6</td>
<td>326.7</td>
<td>25.0</td>
</tr>
<tr>
<td>Indirect</td>
<td>952.0</td>
<td>0.2</td>
<td>80.8</td>
<td>116.0</td>
<td>171.1</td>
<td>184.1</td>
<td>200.5</td>
<td>148.4</td>
<td>47.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Induced</td>
<td>1,766.3</td>
<td>0.4</td>
<td>150.0</td>
<td>215.2</td>
<td>317.4</td>
<td>341.6</td>
<td>372.0</td>
<td>275.4</td>
<td>87.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Total</td>
<td>9,303.4</td>
<td>2.0</td>
<td>789.8</td>
<td>1,133.5</td>
<td>1,671.8</td>
<td>1,799.2</td>
<td>1,959.6</td>
<td>1,450.4</td>
<td>461.6</td>
<td>35.4</td>
</tr>
</tbody>
</table>
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path
Alternative Energy through Traditional Energy: Natural Gas Fuels a Parallel Path

Major Announced Projects by Parish
2010 - 2012 Calendar Years

Mapping conducted by Louisiana Economic Development Business Intelligence
1051 N Third St, Baton Rouge, Louisiana 70802
(225) 342-3725
OpportunityLouisiana.com

Source: ESRI and US Census
- Announced Projects: LED Research
- Location Boundaries are approximated GIS Analyst: MDT 03/14/2013
LED officials approach Sasol and other GTL-technology company officials in late 2010 about GTL projects for North America—project size is measured to be over 1,000 new jobs and over $10-20B in capital investment based on past projects overseas.

Sasol officials indicate need for site in SW LA near their Westlake existing facility with particular site and infrastructure parameters with Louisiana in competition with an Alberta, Canada site.

LED contracts with LEO, LLC on GIS-based site suitability models working with Sasol officials local officials on parcel and local infrastructure information.

Using GIS suitability analysis and securing local GIS data earlier that year, a site is found in 6 weeks and optioned in 2 months by Port of Lake Charles officials for Sasol officials with an announcement by Sasol, State, and local officials in October 2011 on a feasibility study on an identified site and a FEED announcement in December of 2012.
Sasol officials began work in July 2013 with Obama Administration officials through EPA’s Environmental Justice Division and Select USA to coordinate with the Interfaith Center on Corporate Responsibility and other environmental and community groups to buy out homes and work with community leaders on needs near Mossville, LA (near Sasol’s existing facility and new GTL complex).

With workforce constraints (especially construction), Louisiana Economic Development funds a new $20M training facility at SOWELA Technical College in Lake Charles which will be dedicated to the tens of thousands of new jobs to be created in the crafts and trades and to increase the Louisiana PTECH graduates for operators of these facilities in Southwest LA opening in late 2014.

Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project

Result:

- First North American Gas to Liquids facility in North America
- 800 new jobs paying an average of $89,000
- $12-$14B in capital investment
- **Co-location of ethylene cracker with an additional $5-$7B in capital investment and 400 new jobs**
- Up to 8,000 construction jobs at peak form 2014-2020
Alternative Energy through Traditional Energy:
The Sasol Gas to Liquids Project

GTL fuel – a world class product

- Colourless, clean burning fuel for use in diesel and jet engines
- High cetane number, virtually sulphur and aromatics free
- Convenient and easy to use
- Can be used “pure” or as blend with conventional diesel
- Naphtha a diluent for oil sands bitumen

- Compatible with existing engine technology and distribution infrastructure
- Enables the development of new generation internal combustion engine technologies with improved engine efficiency and further reduction of vehicle pollutant emissions
- Meets Euro 5 specifications

World-Wide Fuel Charter Category 4

GTL Diesel Cetane: 70+

Clean, clear product
Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project

GTL fuel finding widespread application

sasol takes flight

Demonstration of first passenger flights in September 2010 on fully synthetic jet fuel

In 2006, a Toyota Hilux Raider, drove from Johannesburg to Qatar on GTL diesel only

The oil from the Toyota fuelled by GTL diesel compared to the oil from the Toyota running on normal diesel after the GTL challenge

The US airforce has tested GTL/CTL fuel in B-52s and B-1Bs

On 1 Feb 2008, an Airbus A380 flew on GTL fuel

Copyright © 2011, Sasol New Business Development
Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project

Environmental performance - local air quality benefits

Greenhouse gas (GHG) impact, measured on a life cycle basis, is comparable to a modern, efficient petroleum refinery.

High cetane number and very low levels of sulphur and aromatics in GTL Diesel ensure a more efficient and cleaner-burning combustion environment.
Alternative Energy through Traditional Energy:
The Sasol Gas to Liquids Project: Qatar Facility
Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project-Site Suitability
Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project-Site Suitability
Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project-Site Suitability
Alternative Energy through Traditional Energy: The Sasol Gas to Liquids Project: Site Suitability
Site screening maps produced for prospect site visits
Provide electronic GIS files for smartphone and tablet field use for Sasol and other LED projects
GPS-based video logging for virtual site tours
KMLs for use with Google Earth
Alternative Energy through Traditional Energy: 2nd Gas to Liquids Project-Site Suitability

Preliminary Site Identification
Parcel Based Search
Alternative Energy through Traditional Energy: Other Gas to Liquids Projects: Site Suitability

INDUSTRIAL SUITABILITY POTENTIAL SITE SUMMARY

<table>
<thead>
<tr>
<th>Parish</th>
<th>No. of Sites</th>
<th>GTL Suitability Index</th>
<th>Mean Score</th>
<th>Acreage Range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>West Baton Rouge</td>
<td>9</td>
<td>7.13</td>
<td>8.13</td>
<td>732</td>
</tr>
<tr>
<td>Ascension</td>
<td>8</td>
<td>7.14</td>
<td>8.00</td>
<td>728</td>
</tr>
<tr>
<td>Plaquemines</td>
<td>6</td>
<td>7.01</td>
<td>7.81</td>
<td>708</td>
</tr>
<tr>
<td>St. James</td>
<td>4</td>
<td>7.79</td>
<td>8.09</td>
<td>801</td>
</tr>
<tr>
<td>Lafourche</td>
<td>3</td>
<td>7.74</td>
<td>8.33</td>
<td>803</td>
</tr>
<tr>
<td>Lafitte</td>
<td>3</td>
<td>7.74</td>
<td>8.33</td>
<td>803</td>
</tr>
<tr>
<td>Assumption</td>
<td>3</td>
<td>7.74</td>
<td>8.33</td>
<td>803</td>
</tr>
<tr>
<td>Terrebonne</td>
<td>3</td>
<td>7.74</td>
<td>8.33</td>
<td>803</td>
</tr>
<tr>
<td>St. Mary</td>
<td>3</td>
<td>7.74</td>
<td>8.33</td>
<td>803</td>
</tr>
<tr>
<td>St. Louis</td>
<td>3</td>
<td>7.74</td>
<td>8.33</td>
<td>803</td>
</tr>
</tbody>
</table>

*Raw land determination based on visual inspection of 2010 NAIP aerial imagery.

Industrial Suitability Index

- 2.0 - 2.8: Least Suitable
- 2.9 - 3.6: Moderately Suitable
- 3.7 - 4.4: Suitable
- 4.5 - 5.2: Well Suitable
- 5.3 - 6: Excellent Suitable
- 6.1 - 6.8: Superior Suitable
- 6.9 - 7.6: Outstanding Suitable
- 7.7 - 8.4: Most Suitable
- 8.5 - 9.2: Exceptional Suitable
- 9.3 - 10: Exceptional Suitable

STUDY AREA

INDUSTRIAL SUITABILITY MODEL
NAVIGABLE WATERWAY DEPENDENT

LEO LLC
17170 Perkins Road
Baton Rouge, Louisiana 70810
(225) 261-4202

CONFIDENTIAL

Not to be copied or distributed in any form without prior written consent from LEO LLC
Copyright LEO LLC © 2012. All Rights Reserved.

INDUSTRIAL SUITABILITY MODEL
NAVIGABLE WATERWAY DEPENDENT

LEO LLC
17170 Perkins Road
Baton Rouge, Louisiana 70810
(225) 261-4202

CONFIDENTIAL

Not to be copied or distributed in any form without prior written consent from LEO LLC
Copyright LEO LLC © 2012. All Rights Reserved.

INDUSTRIAL SUITABILITY MODEL
NAVIGABLE WATERWAY DEPENDENT

LEO LLC
17170 Perkins Road
Baton Rouge, Louisiana 70810
(225) 261-4202

CONFIDENTIAL

Not to be copied or distributed in any form without prior written consent from LEO LLC
Copyright LEO LLC © 2012. All Rights Reserved.

INDUSTRIAL SUITABILITY MODEL
NAVIGABLE WATERWAY DEPENDENT

LEO LLC
17170 Perkins Road
Baton Rouge, Louisiana 70810
(225) 261-4202

CONFIDENTIAL

Not to be copied or distributed in any form without prior written consent from LEO LLC
Copyright LEO LLC © 2012. All Rights Reserved.

INDUSTRIAL SUITABILITY MODEL
NAVIGABLE WATERWAY DEPENDENT

LEO LLC
17170 Perkins Road
Baton Rouge, Louisiana 70810
(225) 261-4202

CONFIDENTIAL

Not to be copied or distributed in any form without prior written consent from LEO LLC
Copyright LEO LLC © 2012. All Rights Reserved.
Alternative Energy through Traditional Energy:
Shell announces 740 job, $12.5B GTL, September 2013 in
Baton Rouge area
Alternative Energy through Traditional Energy: Conclusions and Lessons for Economic Developers

Because of increased natural gas fracking in the last five years associated with natural gas exploration in the North America, Louisiana has benefitted from both traditional energy economic growth from natural gas exploration and production and also feedstock for its traditional chemical sector, and is building an emerging alternative energy industry through GTL, LNG, CNG and biofuels projects.

With economic opportunities come challenges on finding available sites with the tremendous growth in value-added natural gas projects and alternative fuels with GIS suitability technology assisting Louisiana in identifying suitable sites for these unique projects in record time.

Economic development organizations should look to existing energy-related companies for further downstream opportunities for alternative energy projects.
Alternative Energy through Traditional Energy: Conclusions and Lessons for Economic Developers

- EDOs should prepare a strategic site inventory and perform due diligence on sites to be prepared when energy projects come their way, both small and large- (ie, Louisiana and the Sasol and Shell GTL projects)

- With the energy boom around the US continuing, EDOs should increase programs in the crafts and trades at their technical and community colleges with the need for construction workers, operators, logistics to fill many of the pending job openings

- Demand for chemical, civil, and petroleum engineers will increase need for expanded programs at local universities and should spur increased investment in engineering programs.
Alternative Energy through Traditional Energy

Thank You!

Victor Leotta
victor.leotta@leo-llc.com

Tommy J. Kurtz, CECd, MPA
tommy.kurtz@leo-llc.com

LEO, LLC
www.leo-llc.com